
NAVAL POSTGRADUATE SCHOOL
N Monterey, California
N
IN
IN

C)'GR ADON

THESIS

A REDUCED-ORDER EXTENDED KALMAN
FILTER FOR MOVING IMAGES

by

Philip A. Lindeman

December 1989

Thesis Advisor: Jeffrey B. Burl

Approved for public release; distribution is unlimited

*0 07 V J.9

Approved for public release; distribution is unlimited

A Reduced-Order Kalman Filter for
Moving Images

by

Philip A. Lindeman
Captain, United States Marine Corps

B.S., Biology, West Virginia Wesleyan College, 1980

Submitted in partial fulfillment

of the requirements for the degree of

MASTER of SCIENCE in ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 989

Author: ? p
P kl < Lndeman

Approved by:- 7ef - .e / B. Burl dvisor

- rto Cristi, Second' Reader

P. Powers, Chairman
Department of Electrical and Computer Engineering

ii

ABSTRACT

An extended Kalman filter is used to estimate the

velocity of an object moving across an image frame and to

reduce the undesirable effects of noise. The extended Kalman

filter is implemented in the spatial frequency domain to

reduce the number of computations. The resulting filter

structure is a parallel bank of third-order extended Kalman

filters. This parallel structure is referred to as the

modified extended Kalman filter. The performance of the

modified extended Kalman filter is evaluated under a variety

of noise conditions using computer simulations. Simulations

employed two test objects moving across a reference image in

the presence of zero-mean, white, Gaussian noise. The

performance of the filter was demonstrated when these objects

were moved at integer and noninteger velocities. Performance

was also evaluated when a stationary background was included

with the white noise. Accession For

NTIS GRA&I

DTIC TAB
Unannounced Dl
Justification

By
Disti' /

Ii

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in

this research may not have been exercised for all cases of

interest. While every effort has been made within the time

available to ensure that the programs are free of computational and

logic errors, they cannot be considered validated. Any application

of these programs without additional verification is at the risk

of the user.

iv

TABLE OF CONTENTS

I. INTRODUCTION ... 1

II. THE MOVING IMAGE MODEL 3

A. THE MOVING IMAGE MODEL IN THE SPATIAL DOMAIN 3

B. DERIVATION OF THE SHIFT OPERATOR IN THE
SPATIAL FREQUENCY DOMAIN 4

C. THE MOVING IMAGE MODEL IN THE SPATIAL

FREQUENCY DOMAIN 7

III. THE EXTENDED KALMAN FILTER 11

A. GENERAL ... 11

B. THE EXTENDED KALMAN FILTER 11

C. MODELING PROBLEMS 13

D. THE MODIFIED EXTENDED KALMAN FILTER 14

E. THE REDUCED-ORDER EXTENDED KALMAN FILTER 17

IV. SIMULATIONS ... 19

A. PERIODICITY OF THE TEST OBJECTS 19

B. DISCRETE FOURIER TRANSFORM OF MOVING IMAGES 22

C. LOWPASS FILTERING OF THE TRANSFORMED IMAGES 25

D. PERFORMANCE MEASURES OF THE EXTENDED KALMAN
FILTER .. 27

E. SIMULATION RESULTS 28

V. CONCLUSIONS ... 69

APPENDIX A TUTORIAL ON TWO-DIMENSIONAL SPATIAL
FREQUENCIES 71

A. PROGRAM DISCUSSION 71

B. PROGRAM LISTING 79

v

APPENDIX B PPHSE.M. 82

A. PROGRAM DISCUJSSION. 82

B. PROGRAM LISTING 87

APPENDIX C PNEKF. 90

LIST OF REFERENCES 97

BIBLIOGRAPHY 98

INITIAL DISTRIBUTION LIST 99

vi

ACKNOWLEDGEMENTS

I would like to thank Professor J. B. Burl for his patience

and perseverance in assisting me with this expansive concept.

I am also grateful to Professor Hal Titus and his able

assistant, Colin Cooper, who provided assistance,

encouragement, and tolerated my round-the-clock presence in

the Computer Controls Lab. I would also like to thank two of

my fellow classmates, Captain Stephen L. Spehn, USMC, and

Major David Aviv, Israeli Air Force, for their encouragement

and assistance. Finally, I would like to share this

accomplishment with my stalwart wife, Lorna, and son, Andrew,

who provided continual encouragement and tolerance towards my

completing this thesis.

vii

I. INTRODUCTION

In many radar and remote sensing operations, successive

image frames may contain a moving object of interest.

Identification of this object may be complicated by image

degradation resulting from the presence of background noise.

The idea of using an extended Kalman filter (EKF) to enhance

the quality of the image frame and provide an estimate of the

object velocity was proposed by Burl [Ref. 1].

In this thesis, a moving image model is defined as a

series of image frames containing a moving object. An image

frame consists of a two-dimensional array where the individual

array elements are defined as pixels. Each pixel is given a

V numerical value based on the intensity of the image at that

point. These values are either stored in a computer or

projected on a video display terminal.

The EKF requires a model that describes the evolution of

the image frames in time. This spatial domain model is

derived in Chapter II. A shift operator in the model

describes the motion of the object as it traverses the image

frame and is a function of the object's velocity. A

prohibitive number of calculations would be necessary if the

EKF were implemented in the spatial domain. [Ref. 1)

Chapter II further describes the moving image model after

it has been transformed to the spatial frequency domain. The

two-dimensional discrete Fourier transform (DFT) transforms

these two-dimensional image frames from the spatial domain to

the spatial frequency domain. By transforming the image frame

to the spatial frequency domain, the EKF can analyze each of

the spatial frequencies separately. The moving object is

evidenced by a phase shift in each of the spatial frequencies.

The implementation of the EKF in the spatial frequency domain

reduces the number of calculations. The number of

calculations can be further reduced by limiting the number of

spatial frequencies that are analyzed. [Ref. 1]

Chapter III presents the extended Kalman filter equations.

As the velocity estimate error approaches zero, the EKF is

shown to converge to a parallel set of third-order extended

Kalman filters. This parallel structure is referred to as the

modified extended Kalman filter (MEKF). [Ref. 1]

Chapter IV discusses the results of the computer

simulations that were run to record the performance of the

EKF under a variety of noise conditions and background

environments. Conclusions are presented in Chapter V.

2

II. THE MOVING IMAGE MODEL

A. THE MOVING IMAGE MODEL IN THE SPATIAL DOMAIN

Successive image frames containing a moving object can be

modeled by a nonlinear state equation in the spatial domain

as,

x(k+l) = f(k+l) B(v) 0 f (k) + I f(k)

v(k+l1) 0 1 v(k) Vk

= a(v)x(k) + (k) . (2.1)

An image frame has the dimensions of N, by N2 pixels. The

amplitude of each pixel, when stacked into a column, forms

the vector f, where f E R~n1). The velocity vector, v,

consists of a two-element column vector describing the

horizontal and vertical velocities of the moving object in

terms of the number of pixels per iteration. The vectors f

and v combine to form the state vector x, where x E R(nl n 2 2).

S(v) is a two-dimensional shift operator with the magnitude

and direction being a function of the velocity vector, v.

The plant noise vector, C, is composed of the image plant

noise, f, and the velocity plant noise, v. The plant noise

is assumed to be a zero-mean, white, Gaussian random process

with a covariance matrix defined as

3

L fl 1 [o21 01
= E [f I (] = 0, (2.2)E v 0 02 vI

where E[.] is the expectation operator and I is the identity

operator.

The measured image, y(k), is defined by the corresponding

measurement equation,

y(k) = f(k) + v(k)

= [I 0) x(k) + v(k)

= cx(k) + v(k) , (2.3)

where y E R("j "l) and v E R (" I
2) . The zero mean, white, Gaussian

random process, v(k), has a known covariance matrix

Rvv = E [v(k) vT(k)] = 02 . (2.4)

B. DERIVATION OF THE SHIFT OPERATOR IN THE SPATIAL FREQUENCY

DOMAIN

A image frame is a two-dimensional, finite-extent sequence

defined as f(njn 2) where 0 < nj < NI-l and 0 < n2 < N2-1. The

sequence f(n 1 , n2) is transformed from the spatial domain to t.ie

spatial frequency domain using the two-dimensional discrete

Fourier transform (DFT),

NI - N2 -I nk n2 k2 1*1
F(kk2) I I f(n,n)ex p -j27t -I- + N2 , (2.5)tn= n2=02

4

where 0 < k, < N1-1 and 0 < k2 < N2-1.

The shift operator in the spatial frequency domain is

derived from the circular shift property of the discrete

Fourier transform (Ref. 2:p. 67]. The circular shift property

is defined as
S mlk 1 m2 k2

x((nm, (n 2 -m2)) N2 I N W N2 X(k,,k2)

D(ml ,m2) X (kl, k2) , (2.6)

_2w

where ((*))NI is the modulus operator, WN, = e N, and D(mlm 2)

is the transformed shift operator. Equation 2.6 indicates

that a circular shift in the spatial domain results in a phase

shift in the spatial frequency domain.

The original image frame, x(nl,n 2), is assumed to be a

periodic two-dimensional sequence with the fundamental period

equal to the frame dimensions. The object moving across an

image frame then describes a circular shift. [Ref. 2:pp. 61-

62]. This implies that, as the object moves off one edge of

the screen, it reenters the screen from the opposite side.

This assumption was necessary because the processing

capabilities of the computer used to execute the EKF algorithm

limited the image frame dimensions. Image frames of finite

extent, such as a radar screen or video display, do not

require this property because the moving object's size will

likely be disproportionally smaller than the screen

dimensions.

5

Derivation of D(m,m 2) begins by introducing a circular

shift into the original image frame, f(nl,n 2). Equation 2.5

now becomes

NI-I N2-1 -j, 2nik 2wn 2k2)
F'(k11 k 2) = 1 f(n,-m 11 n2-m 2) e , (2.7)

nl= 01 n2 20

where F'(kI,k 2) is the circular-shifted, transformed image

frame. The amount of pixel movement is described by m, for

the horizontal shift and m2 for the vertical shift.

Letting 11 = nl-ml and 12 = n2-m2, Equation 2.7 becomes

J 21r[I,+ m,)k, 21{ 12+ n2)k2
Nl-ml-I N2 2-1 - NJI N2

F' (klk 2) = Z Z f(11,12) eL. (2.8)
11= -MI 12 -- -0'2

Rearranging terms, Equation 2.8 reduces to

I2-lk,
22!k2)

F'(k l ,k2) = e_ 2 N 2 F(k ,,k2)

= WN MkI W m2k2 F(kI,k2)

= D(m 1,m 2) F(k,,k 2) , (2.9)

where F(kl,k 2) is the transformed image frame without the

circular shift. This proves that, when an object moves across

an image frame, the motion is described by a phase shift in

the spatial frequency domain, thereby agreeing with the

circular shift property (Eqn. 2.6).

6

The notation is simplified by defining the frequency

vector, w, as

[21Tk
21rk1= 2 =[2] (2.10)

and the velocity vector as

V2(2 .)

Equation 2.9 now becomes

F' (kjk2) -e -j (Tv) F(k,k 2)

D(mlm 2) F(k,,k 2)

= D(v) F(k,,k 2), (2.12)

where T is the transpose operation.

The example contained in Appendix A further demonstrates

the use of the phase shift operator in reconstructing image

frames in the spatial frequency domain.

C. THE MOVING IMAGE MODEL IN THE SPATIAL FREQUENCY DOMAIN

The spatial domain model described by Equations 2.1 and

2.3 can now be transformed to the spatial frequency domain.

The transformation is accomplished by using the two-

dimensional discrete Fourier transform,

N 1" N2 -I (+
F(k,k 2) = 2 2 f(n,,n2)exp -j27t N + N-k2

n1=O n2 0 N2 (

where 0 < k< N1-. and 0 < k2 < N2-1.

7

The vector, f(k), and its corresponding plant noise, ,

are transformed to the spatial frequency domain,

Re(Fl (k))

Im(F1 (k))

F(k) = F(f(k)} = Re(F N N2 (k)) (2.14)

Im(FNIN2 (k))

L v(k) .

Z(k) = F({f(k)) , (2.15)

where F(e) is the two-dimensional discrete Fourier transform.

(It should be noted that the index k refers to the sample at

time k and is not related to the frequency vector.) Only half

of the spatial frequencies need to stored in F(k) due to the

conjugate symmetry that results from the transformation of a

real image [Ref. 3:p. 45].

The state equation is defined in the spatial frequency

domain as,

X(k+1) = A(v)X(k) + Z(k)

=F(k+1) D(v) o F(k) + zr(k) 1 (2.16)

v(k+l) 0 Lo J v(k) + V(k) (

where X E R(nlnz+2). The transformed shift operator, D(v), is a

diagonal matrix where the diagonal terms, Di(v), are the

8

transformed shift operators for a specific spatial frequency.

Because the real and imaginary parts of the spatial frequency

vector are stacked into a column vector, Di(v) is expressed

in terms of its trigonometric relations,

P1 (k+1) = D1 (v)FP (k)

[Re(F,(k+l)) i cos(w Tv) sin(WTv) i Re(F1 (k)) 1

Im(F (k+l)) = sin(w1 Tv) Cos (WiTV) I m(F, (k)) 1 (2.17)

(N,-I) (N2-1)where i = 0,I,'...,
2

The covariance matrix for the image plant noise, Z, is,

[Z = Lo 2 J (2.18)0 02 vI

where E[.] is the expectation operator and I is the identity

operator. Because the discrete Fourier transform is a linear

operation on f, Z remains a zero-mean, Gaussian random

process.

The corresponding measurement equation in the spatial

frequency domain becomes,

Y(k) = F(k) + N(k)

= 1 0) X(k) + N(k)

= C X(k) + N(k) (2.19)

9

where Y(k) = F(y(k)) and N(k) = F(v (k)). The state equations

given by Equations 2.16 and 2.19 are the basis for

implementing the EKF in the spatial frequency domain.

10

III. THE EXTENDED KALMAN FILTER

A. GENERAL

In this chapter, the extended Kalman filter (EKF) is

obtained from the state equations that were derived for the

moving image model. Equations 2.16 and 2.19 are used to

implement the EKF in the spatial frequency domain. The

modified extended Kalman filter (MEKF) is based on the

diagonal properties of the transformed shift operator, D(v),

and covariance matrices. The parallel structure of the MEKF

is formed in the limit as the velocity estimate approaches

the actual velocity.

B. THE EXTENDED KALMAN FILTER

The extended Kalman filter (EKF) algorithm is used when

the state equations are linearized about each new estimate as

they become available [Ref. 4: p.158). The EKF uses the

spatial frequency domain state equations, Eqns 2.16 and 2.19,

for the moving image model.

The linearized state equation is given as

6X(k+l) = A(Xo)6X(k) + Z(k) , (3.1)

where 6X(k)=X(k)-Xo. Here, X0 is shorthand notation for the

current estimate X(klk) [Ref. 4: p.158) and A(Xo) is the

Jacobian of the nonlinear state equations about X,. This

11

means that the ij component of A(Xo) is the partial derivative

with respect to the jth state of the ith component of the state

equation (Eqn. 2.16) and fk(X&) is then composed as follows:

N! N2

i(X 0) = diagonal[Ai(X,)] i = 1,2,..., 2 (3.2)

0 1

where a = wTiv, f 1 (k) = Re[F(k)] and f 2 (k) = Im[F1 (k)]. A

further discussion of the linearization techniques used by

EKFs is contained in Ref. 4, p.154, and Ref. 5, p.194.

The EKF equations for the moving image model are

summarized below.

Predict ion

State prediction

X(k+llk) = A(v) X(klk) (3.4)

Covariance prediction
^T

P(k+llk) = A(X0)X(kjk)P(klk)A (X0)X(klk) + Qzz (3.5)

Irnnovat ion

e(k+l) = Y(k+l) - Y(k+ljk)

= Y(k+l) - C X(k+ljk) (3.6)

Kalman gain

G(k+l) = P(k+lIk)cT[c P(k+llk) CT + RW] (3.7)

12

Correction

State correction

*(k+llk+l) = X(k+llk)+G(k+l)[Y(k+l)-Y(k+lIk)](3.8)

Covariance correction

P(k+llk+l) = [I - G(k+l)C]P(k+llk) (3.9)

The notation k+lk reads as "at time k+1, given data up

through time k."

B. MODELING PROBLEMS

When the Kalman filter is implemented, the operation of

the filter can be degraded by modeling errors resulting from

linearization around the imperfectly estimated state. One

possible method of reducing this divergence is to add

fictitious plant noise to the system model. [Ref. 6: p.280]

The system dynamics matrix, A(vo+A), is assumed to have

model errors which is represented by A in Eqn. 3.10 and is

expressed as a first-order Taylor series expansion. The

first-order term is then combined with the actual plant noise

vector, w(k), to form the plant noise vector, .

X(k+l) = A(vo+A)X(k) + w(k)

A(v)X(k) + [aA(v) A X(k) + w(k)]

- A(v)X(k) + C(k) , (3.10)

where A denotes the model error and w(k) is the actual plant

noise vector. Including the model error, as part of the plant

13

noise vector, prevents new measurements from being weighted

too lightly because the Kalman gains tend to zero as t - oa.

This ensures that the model continues to track the system as

new measurements are taken.

C. THE MODIFIED EXTENDED KALMAN FILTER

As mentioned earlier, the diagonal properties of the

transformed shift operator, D(v), and the covariance matrices

are the basis for the parallel structure shown in Figure 3.1.

This parallel structure is referred to as the modified

extended Kalman filter. Reference 1 outlines how the EKF

converges to the MEKF as the velocity estimate approaches the

actual velocity.

Practical implementation of the MEKF suggests that each

filter in the parallel bank be dedicated to a specific spatial

frequency. Each individual filter is referred to as a single

frequency extended Kalman filter (SFEKF).

The state vector for a specific spatial frequency is

defined as:

- X|I(k) -Re(Fi(k))

Xi(k) = XJ.2 (k) Im(F,(k)) (3.11)

L Xi.3(k) WiTv

where the first two states, Xj,1 (k) and Xi,2(k), are the Fourier

coefficients associated with a specific spatial frequency and

the third state, Xi,3 (k), is the dot product of the spatial

14

frequency vector and the velocity vector. The reason for

making Xi.3(k) a dot product is because the velocity vector is

not directly observable for a specific spatial frequency.

Even though the Kalman filter can generate estimates without

the state being observable, estimation of the unobservable

portion of the state relies on a priori information and not

on the measurements [Ref. 1]. Simplification of. the

individual filters results because only Xi,3(k) is estimated.

The a priori information is later combined with all the

estimates of X1,3(k) to yield a final velocity estimate. The

final velocity estimate is calculated using the weighted least

squares algorithm given by:

'(k) = (WTZ-IW)-IWTZ-IkaI.3(k) , (3.12)

where w was defined by Eqn. 2.10 and

1 0P1, 3 3 (kl k)

. • (3.13)
0 IN2 (k k)

2 .3,3

Pi,3,3 is the 3,3 component of the ith estimation error

covariance matrix computed by each of the SFEKF's.

15

f (ti) F(t.1) EKF~ _) '

f(21)FF(2,1) , KJ

•F T

T

f(N.Nz8)F(Ni.Nz-$
) EK"

f(N.NZ-2) F(NI-N2-2) EK

f (NIN2-1) F(N,,N2-1) . F ITv EIH ED

LEAST

SQUARES
f(NI.N2) F(Nl'N2) EF ALGORITHM

Figure 3.1 The Modified Extended Kalman Filter

16

The state equation for the SFEKF is

Xi (k+1) = A1 (v)X (k) + Zi (k)

= i (v J J Xj(k) + Zj(k) (3.14)0 1

and Zi has the known covariance matrix

QZ zi = E[ZIZIT] = 0 Of2 0] (3.15)
-0 0 j~ij2O2

The measurement equation and corresponding measurement

noise covariance matrix for the SFEKF are similarly derived

for each spatial frequency and have the form shown earlier in

Eqn. 2.19.

The linearized state equation is given by

6Xi(k+l) = i 1 (X0,)6X,(k) + Zi(k) , (3.16)

where Ai(X 0i)is the Jacobian for a specific spatial frequency

and is linearized about X0.

The extended Kalman filter equations, Eqns. 3.3 through

3.8, are similarly modified to accommodate the SFEKF model.

D. THE REDUCED ORDER EXTENDED KALMAN FILTER

Data compression of images is achieved by truncating

spatial frequencies [Ref. 1]. The parallel structure of the

MEKF can easily accommodate this truncation and suggests a

reduced-order filter. Even though this will lead to a

17

deterioration of the output image quality, the degrading

effects of the image noise are simultaneously reduced.

The actual selection of which spatial frequencies to

truncate will depend upon the distribution of the energy in

the signal and noise level. A priori knowledge of the spatial

frequency content would assist in the selection of which

spatial frequencies are to be analyzed when filtering a series

of image frames.

18

IV. SIMULATIONS

The MATLAB program written for this thesis simulated an

image frame with the dimensions of 32x32 pixels and is

contained in Appendix C. The two types of moving objects

employed for test purposes were an 8x8 pixel square of unity

amplitude (Figure. 4.1) and an 8x8 pixel pyramid with

amplitude intervals of 0.25 (Figure 4.2). Additionally, tests

were conducted using a fixed a checkerboard background.

Figures 4.3 and 4.4 depict the test objects moving across a

checkerboard pattern. The individual checkers were 8x8 pixel

squares with an amplitude of 0.25.

A. PERIODICITY OF THE TEST OBJECTS

An interesting challenge had to be overcome because of

the small dimensions of the image frame. The circular shift

property of the discrete Fourier transform allowed the

computer simulation to be carried out over several hundred

iterations. The original 32x32 pixel image frame used in the

simulations was assumed to be a periodic two-dimensional

sequence. The moving object quickly traversed the image frame

because of the small dimensions. By assuming periodicity,

test objects that went off one edge of the frame would

reappear on the opposite edge. This assumption allowed

simulations to be run over several hundred iterations because

19

Figure 4.1 An 8x8 pixel, square object of unity
amplitude.

Figure 4.2 An 8x8 pixel, pyramid object with amplitude

intervals of 0.25.

20

Figure 4.3 An 8x8 pixel, square object of unity
amplitude moving across a checkerboard background where
each of the individual checkers has an amplitude of
0.25.

Figure 4.4 An 8x8 pixel, pyramid object with amplitude
intervals of 0.25 moving across a checkerboard
background where the individual checkers have an
amplitude of 0.25.

21

it appeared to the extended Kalman filter that the image frame

was of a larger dimension.

B. DISCRETE FOURIER TRANSFORM OF MOVING IMAGES

A description of how the transformed image frame appears

in the spatial frequency domain will help demonstrate why the

extended Kalman filter was implemented in the spatial

frequency domain.

As an example, the square object depicted in Figure 4.1

is transformed to the spatial frequency domain and the

resulting magnitude plot is shown in Figure 4.5. Just as a

one-dimensional square wave transforms to a one-dimensional

sinc function, the two-dimensional square object transforms

to a two-dimensional sinc function.

What is not obvious is that as the square object is moved

across the image frame, a linear phase shift results in each

of the spatial frequencies; the magnitude plot remains the

same. The amount of phase shift is frequency dependent as

was shown in Equation 2.21.

Figure 4.6 shows the linear phase shift that occurs in

the spatial frequencies F(1,0) and F(0,1). When the square

object is moved horizontally 1 pixel per iteration, a phase

shift of -11.25" occurs in F(1,0). Likewise, when the square

image is simultaneously shifted vertically 2 pixels per

iteration, F(0,1) experiences a 22.5" phase shift per

iteration.

22

Figure 4.5 Magnitude plot of the transformed image

frame depicted in Fig. 4.1.

23

2W

150-

50

U

.50

-100

-1 50

Iteration

Figure 4.6 A linear phase shift of -11.25" per iteration
occurs in F(1,0) (dashed line) and 22.5" per iteration for
F(O,1) (solid line) when the square object is moved 1
pixel horizontally and 2 pixels vertically per iteration.

24

Appendix B further discusses the idea of how objects

moving at a constant velocity in a no-noise environment create

a linear phase shift in the spatial frequency domain. Also

shown is the effect of adding white noise to the image frame

before it is transformed to the spatial frequency domain.

C. IOWPASS FILTERING OF THE TRANSFORMED IMAGES

After the test objects were transformed to the spatial

frequency domain, the specific spatial frequencies were

analyzed. Most of the energy for the two test objects was

centered about the dc component which was located at the

center of the transformed array.

Because most of the energy was found near the dc

component, the high frequency components were truncated or

filtered out using a lowpass filter,

Y(k11k2) = X(k,,k 2)H(k,k2) (4.1)

where Y(k1,k2) is the filtered image, X(kl,k 2) is the

transformed image, and H(kl,k 2) is the lowpass filter.

As an example, Figure 4.1 was transformed to the spatial

frequency domain where a lowpass filter was applied. This

operation truncated the high frequency components. After

transformation back to the spatial domain, Figure 4.7 shows

the resulting filtered image frame. This filtered image frame

25

Figure 4.7 The square image depicted in Figure 4.1
after being filtered in the spatial frequency domain.
The sharp edges are lost due to the loss of the high
frequency components.

26

will be used in finding the error to calculate the Frobenius

norm, which is discussed in the next section.

D. PERFORMANCE MEASURES OF THE EXTENDED KAIMAN FILTER

After the specified number of iterations had been

completed for each simulation, the final, filtered image frame

was transformed back to the spatial domain. This filtered

image frame could then be visually compared with the no-noise

image frame to see how effective the extended Kalman filter

performed.

An additional performance measure involved analytically

calculating the Frobenius norm throughout the simulation.

The Frobenius norm is a scalar which is computed by squaring

each of the terms in a matrix, summing each of the squares,

and then taking the square root of the final sum (Eqn. 4.1)

(Ref. 7].

II A 1F = Z I aijl] (4.1)

Two Frobenius norms were calculated for each of the

simulations. The first Frobenius norm was calculated from

the error matrix that was found by subtracting the current

estimate of the image frame from the current, no-noise image

frame. Because the extended Kalman filter only analyzed

specific spatial frequencies, the current no-noise image frame

27

was lowpass filtered so that only those spatial frequencies

analyzed by the extended Kalman filter remained. As was shown

earlier, Figure 4.1 is an example of a current, no-noise image

while its lowpass filtered counterpart is depicted in Figure

4.7. The current estimate of the image frame was then

subtracted from the lowpass filtered image frame and the

second Frobenius norm was calculated for this error matrix.

E. SIMULATION RESULTS

The first set of computer simulations had a square test

object traversing the image frame. The extended Kalman filter

was evaluated under a variety of test conditions which are

summarized in Table 4.1.

The two types of backgrounds were a homogeneous background

with zero intensity and a checkerboard background. The

velocity in Table 4.1 is described in parentheses where the

first number is the horizontal velocity and the second number

is the vertical velocity. Finally, the standard deviation of

the white noise describes the noise level that was introduced

to the image frame during the successive iterations.

Additionally, to ensure that the same random noise sequence

was used for each of the computer simulations, a random number

seed was used to initilize the random number generator.

Figures 4.8 through 4.47 are the computer simulation

results using the square test object. The no-noise image

frame, that the extended Kalman filter is estimating, is

28

frame that the extended Kalman filter is estimating is

presented first. The extended Kalman filter estimate is then

depicted; followed by the horizontal and vertical velocity

estimates and the Frobenius norm plots.

TABLE 4.1 SIMULATION TEST CONDITIONS (SQUARE OBJECT)

Simulation Background Velocity Noise level

1 H (1.0,2.0) 1.0

2 C (1.0,2.0) 1.0

3 H (1.0,2.0) 2.0

4 C (1.0,2.0) 2.0

5 H (1.0,2.0) 4.0

6 C (1.0,2.0) 4.0

7 H (2.5,1.5) 1.0

8 C (2.5,1.5) 1.0

9 H (1.0,0.5) 1.0

10 C (1.0,0.5) 1.0

H - homogeneous background, C - checkerboard background

The results of the first two simulations are shown in

Figures 4.8 through 4.15. The noise level for both

simulations had a standard deviation of 1.0. The object was

moved horizontally 1 pixel per iteration and simultaneously

moved vertically 2 pixels per iteration. Even with the

checkerboard background, the EKF was able to rapidly estimate

the object velocity for both simulations. The Frobenius norm

correspondingly reached steady state as the velocity estimates

approached the actual object velocity.

29

The next two simulations are depicted in Figures 4.16

through 4.23. The standard deviation of the noise was

increased to 2.0. Figures 4.16 and 4.20 show the square

object position after 95 iterations. These two figures

demonstrate the assumption that the image frame used in these

simulations was a two-dimensional, periodic sequence. After

95 iterations, the square object is leaving the image frame

from the far right corner. The sections of the square object

that have left the image frame are shown reentering the image

frame from the appropriate, opposite edges.

The EKF was able to detect the square object motion as it

traversed the homogeneous background. The high noise level

caused the EKF to take considerably longer to estimate the

object velocity, but the EKF was still able to provide an

enhance estimate of the image frame (Figure 4.17).

The increased noise level and addition of the checkerboard

background precluded the EKF from detecting the square test

object and estimating its velocity.

The next set of simulations depicted in Figures 4.24

through 4.31 were included to show how the EKF performed when

the standard deviation of the noise was increased to 4.0.

After 100 iterations, the EKF was unable to detect the square

object or provide a reasonable estimate of the object

velocity.

The square object velocities of simulations #7 through

#10 included noninteger values. The standard deviation of

30

the noise was kept at 1.0 for all four simulations. The

response and performance of the EKF was similar to the first

two simulations where the square object moved with integer

velocities and the standard deviation of the noise was 1.0.

The computer simulation results using the pyramid test

object are depicted in Figures 40 through 71. The various

test conditions for the pyramid object are summarized in Table

4.2.

The pyramid test object contains slightly less than half

of the signal energy content in the square test object. This

had a direct effect on the performance of the EKF.

Simulations #1 and #2 are shown in Figures 4.48 through

4.55. The first two simulations using the pyramid test object

had identical test conditions as the first two simulations

using the square test object. However, the EKF needed about

25 more iterations before it was able to track the motion of

the pyramid test object (Figure 4.50).

The addition of the checkerboard background in simulation

#2 further reduced the signal energy of the pyramid test

object. This adversely affected the performance of the EKF

as it was unable to detect or track the motion of the pyramid

test object.

In simulations #3 and #4, the standard deviation of the

noise was raised to 2.0. Here, the increased noise level

prevented the EKF from detecting the pyramid test object.

31

TABLE 4.2 SIMULATION TEST CONDITIONS (PYRAMID OBJECT)

Simulation Background Velocity Noise level

1 H (1.0,2.0) 1.0

2 C (1.0,2.0) 1.0

3 H (1.0,2.0) 2.0

4 C (1.0,2.0) 2.0

5 H (2.5,1.5) 1.0

6 C (2.5,1.5) 1.0

7 H (1.0,0.5) 1.0

8 C (1.0,0.5) 1.0

H - homogeneous background, C - checkerboard background

Simulations #5 through #8 had the pyramid test object

moving at noninteger velocities. The standard deviation of

the noise was kept at 1.0 for each of these simulations. The

EKF was able to detect and closely estimate the noninteger

velocities for simulations #5 and #7 which had the pyramid

test object moving across the homogeneous background. Again,

as was experienced in simulation #2, the addition of the

checkerboard background precluded the EKF from detecting and

tracking the pyramid test object.

32

Figure 4.8 Image Frame for Simulation #1 after 40
Iterations.

Figure 4.9 Extended Kalman Filter Estimate of Image Frame
for Simulation #I after 40 Iterations.

33

2.5

0.5

0 20 40 60 80 100 120 140 160 180) 2001

Iteration

Figure 4.1.0 velocity estimates for Simulation #1.

0.22

0.2

0.18

ZO
S0.16

0.12 '

0.1
0 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.112 Frobenius norm results for Simulation #1.

34

Figure 4.12 Image Frame for Simulation #2 after 40
Iterations.

Figure 4.13 Extended Kalman Filter Estimate of Current
Image Frame for Simulation #2.

35

2.5

2 -
. 1.5 -

0.5

0 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.14 Veclocity estimates for Simulation W2.

0.28

0.260.24 -
0.22 - ',

Z 0.213'

I II (\ , t

.16 ,, " "'
i I

0.14- 'U it " i'
I 'A i

0.12

0 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.15 Frobenius norm results for Simulation #2.

36

Figure 4.16 Image Frame for Simulation #3 after 95
Iterations.

Figure 4.17 Extended Kalman Filter Estimate of Image
Frame for Simulation #3 after 95 Iterations.

37

2.5

2 P% IAj~ 'A V%

1
ICI

A-, /

ly 1.

-0.5"
0 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.18 Velocity estimates for Simulation #3.

0.38

0.36-

0.34-
A I

0.32 -1 it/

0Z 0.3 :

0.2 11 Ai I g

0.24 1

0.22 V

'I 1 "
0. 2

v

0 20 40 60 80 100 120 140 160 18) 20(

Iteration

Figure 4.19 Frobenius norm results for Simulation #3.

38

Figure 4.20 Image Frame for Simulation #4 after 95
Iterations.

Figure 4.21 Extended Kalman Filter Estimate of Image
Frame for Simulation #4 after 95 Iterations.

39

0.8

0.6-

A I0.4 IvI /

0.2 - '^" ",

-0.24.
-0.6'

0 2 .40 60 80 10 120 140 160 ISO 20(

Iteration

Figure 4.22 Velocity estimates for Simulation #4.

0.38

0.26

0.34
-

0.32

fi f I #t

Itraio

0.28 -

0.26 A ' % "

0. 24 v

0 20 40 60 80 100 120 140 160 180- 200

Iteration

Figure 4.23 Frobenius norm results for Simulation
#4.

40

Figure 4.24 Image Frame for Simulation #5 after 100
Iterations.

Figure 4.25 Extended Kalman Filter Estimate of Image
Frame for Simulation #5 after 100 Iterations.

41

0.5

-0.5

-1.5

-21
0 10 20 30 40 50 60 70 80 90 100

Figure 4.26 Velocity Estimates for Simulation #t5.

0.6

0.55

0.45

0.4-

0.35

0.3-

0. 10 20 30 40 50 60 70 80 90 100

Figure 4.27 Frobenius Norm Results for Simulation #5.

42

Figure 4.28 Image Frame for Simulation #6 after 100
Iterations.

Figure 4.29 Extended Kalman Filter Estimate of Image
Frame for Simulation #6 after 100 Iterations.

43

0.2

NA

-0.4

-0.6- N

-0.8

0 10 20 30 40 50 60 70 80 90 100

Figure 4.30 Velocity Estimates for Simulation #6.

0.65

0.45 -

0.4

0.25 0 1 .0 2 .0 3 .0 4 .0 5 .0 6 10 7 .0 8 .0 9 .0 100

Figure 4.31 Frobenius Norm Results for Simulation #6.

44

Figure 4.32 Image Frame for Simulation #7 after 45
Iterations.

Figure 4.33 Extended Kalman Filter Estimate of Image
Frame for Simulation #7 after 45 Iterations.

45

3

I1 A

1.5

0.5

0 50 100 150 .200 250 300

Iteration

Figure 4.34 Velocity Estimates for Simulation #t7.

0.26

0.24-

0.22

0.

0146

Figure 4.36 Image Frame for Simulation #8 after 95
Iterations.

Figure 4.37 Extended Kalman Filter Estimate of Image
Frame for Simulation #8 after 45 Iterations.

47

3

2-5 -A I AA;

2 I

0.5

11
0.8

0.2

0.4

0.228 'f

0.22

0.2

0. 50 1001

A It erat:1Ion11 1 t , ;

Figure~~~~~~~~~~ 4.9Foeif~or eut o ilatin

'A' lpI I48

Figure 4.40 Image Frame for Simulation #9 after 65
Iterations.

Figure 4.41 Extended Kalman Filter Estimate of Image
Frame for Simulation #9 after 65 Iterations.

49

1.2 ,.

I.l '
t

t J I i I i I I I i tl

0.8 ,

Ii I

> 0.4

Iteration

Figure 4.42 Velocity Estimates for Simulation #9.

0.22

0.2

0.18

I. .4I I ~ I .'i ' II t I IPIl

00 50 100 150 200 250 300

Iteration

Figure 4.43 Frobenius Norm Results for Simulation #9.

50

Figure 4.44 Image Frame for Simulation #10 after 65Iterations.

Figure 4.45 Extended Kalman Filter Estimate of Image
Frame for Simulation #10 after 65 Iterations.

51

1.2

Ai I

0.6- /

0.4

0.2

0.

-0.21

0 50 100 150 200 250 300

Iteration

Figure 4.47 Veroeiuy stNomaRess for Simulation #10.

0.52

Figure 4.48 Image Frame for Simulation #1 after 40
Iterations.

Figure 4.49 Extended Kalman Filter Estimate of Image
Frame for Simulation #1 after 40 Iterations.

53

2.5

2 - v r%_-~1 J'~ .~\P/

1.5-

0- 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.50 Velocity Estimates for Simulation #1.

0.2

0.19-

0.18-

0.17-

5 0.16-
z

.~15

0.14
I v

0.13 - I
0.12-

0.11-

200L t 4 0 6 0 8 0 100 120 140 160 180 200

Iteration

Figure 4.51 Frobenius Norm Results for Simulation #1.

54

Figure 4.52 Image Frame for Simulation #2 after 40
Iterations.

I

Figure 4.53 Extended Kalman Filter Estimate of Image
Frame for Simulation #2 after 40 Iterations.

55

0.4

-0.3

-0.4 1

IteratIt

0.2

0.2

0.85 A 99
0 0 0 0 0 0 120 14 16 18 20

A ~~ tera ion 9 9

~ 0.148, 119 1 999

lg 0.12 11i V i

0.1
0 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.55 Frobenius Norm Results for Simulation #2.

56

Figure 4.56 Image Frame for Simulation #3 after 65 t
Iterations.

Figure 4.57 Extended Kalman Filter Estimate of Image
Frame for Simulation #3 after 65 Iterations.

57

1.5

1 1A %./ \

'-I
IV

I

-0.5

0 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.58 Velocity Estimates for Simulation #3.

0.34

0.32

0.3-

0.28-
0
Z 0.26 -

P. 0.24-

22

0.2

0.18

0.161
0 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.59 Frobenius Norm Results for Simulation #3.

58

Figure 4.60 Image Frame for Simulation #4 after 65
Iterations.

Figure 4.61 Extended Kalman Filter Estimate of Image
Frame for Simulation #4 after 65 Iterations.

59

0.6

0.4-

0.2- If ~ I

JA At
0 44 t

~Alt

-0.4-

-0.6-

-0.80 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.62 Velocity Estimates for Simulation #4.

0.34

0.32-

0.3-

z0.28' -

0.26-~~
0 .2 4

/ "V I

0.22

0.20 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 4.63 Frobenius Norm Results for Simulation #4.

60

Figure 4.64 Image Frame for Simulation #5 after 95
Iterations.

Figure 4.65 Extended Kalman Filter Estimate of Image
Frame for Simulation #5 after 95 Iterations.

61

3
\h 'I .P.2.5 , vV"i rJ % - ,'t" IA". % **tV

2

/ v .

/1

0.5 -1.

0

-0.5

0 50 100 1;0 200 250 300

Iteration

Figure 4.66 Velocity Estimates for Simulation #5.

0.2

0.19

0.18

0.17

5 0.16 '

. 0.15

2 0.14

0.13-

0.12 - fit .I.~ i %

0.11- I
0.12

00 50 100 150 200 250 300

Iteration

Figure 4.67 Frobenius Norm Results for Simulation #5.

62

Figure 4.68 Image Frame for Simulation #6 after 95
Iterations.

Figure 4.69 Extended Kalman Filter Estimate of Current
Image Frame for Simulation #6.

63

0.4

0. -o~

-0.2

-0.4

I qttea I I In if

Fiur 4.7 Velcit Esiae o Smlto6

-0.2

0.9-

0.8

-0 01 5 10 15 20 5I

0.2V

0.13 8

0.12
0 50 10I5 0 5 0

IteNatiI

Fiue47zrbnu omRslsfrSmlto 6

64I

Figure 4.72 Image Frame for Simulation #7 after 65
Iterations.

Figure 4.73 Extended Kalman Filter Estimate of Image
Frame for Simulation #7 after 65 Iterations.

65

1.2

0.8 - I

0.6 -

0 .4

0.21

0

-0.2

0 50 100 150 200 250 300

Iteration

Figure 4.74 Velocity Estimates for Simulation #7.

0.19

0.18 .

0.17

0.16
0 .
Z 0.15

0.14
S0.13

o~~ ' l? ! ' J

0.11 -,

0"o 50 100 10 26 250 300

Iteration

Figure 4.75 Frobenius Norm Results for Simulation #7.

66

Figure 4.76 Image Frame for Simulation #8 after 65
Iterations.

Figure 4.77 Extended Kalman Filter Estimate of Image
Frame for Simulation #8 after 65 Iterations.

67

0.8

0.6-

0.4- "~

-0.2

-0.2

0.9-

0.8

0.3

0.19'

0.128

0.11

Volterat11n

Figur 4.7 Fr1nu Nom4eulsfo iulto#8

A 68

V. CONCLUSIONS

The extended Kalman filter (EKF), as applied to the moving

object model, was evaluated under a variety of test

conditions. These test conditions included various noise

levels, two types of backgrounds, and integer and noninteger

velocities. Inclusion of the Frobenius norm provided an

analytical measure of the EKF's performance. The performance

of the EKF was directly linked with its ability to detect and

track the test object's motion.

For simulations using a homogeneous background, the EKF

was unable to detect and track the square test object when

the standard deviation of the noise was raised to 4.0.

Similar results occurred when the pyramid test object was used

and the standard deviation was increased to 2.0.

The detection of the test object by the EKF is also

related to the signal energy content of the test object in

relation to the energy contained in the image frame

background. The addition of the checkerboard background

increased the energy content of the background. As a result,

the simulations showed that the detection threshold of the EKF

was reduced. The EKF was precluded from detecting and

tracking the square test object's motion across a checkerboard

background when the standard deviation of the noise was raised

above 2.0. Even with a standard deviation of 1.0, the EKF was

unable to detect and track the pyramid test object.

69

These computer simulations have demonstrated that the EKF

algorithm can successfully operate in a high-noise

environment. These results are encouraging and warrant

continued research.

70

APPENDIX A. TUTORIAL ON TWO-DIMENSONAL SPATIAL FREQUENCIES

A. PROGRAM DISCUSSION

The program SPAPICT.M begins by placing an 8x8 square

object of unity amplitude in the center of the frame (Fig.

A.1). The image frame is then transformed to the frequency

domain where each spatial frequency component is defined by

the discrete Fourier transform [Ref. 2].

N 1-I N2 - n k nk

F(kl,k 2) = Z 2 f(n,,n 2)exp -j21r I + 2 2 (A.1)
ni: 0 n2 =0

where 0 < kI S N1-1 and 0 < k2 S N2-1.

The transformed image frame is sent through an ideal

lowpass filter (LPF), i.e., the high frequency components are

truncated and set equal to zero. The filtered image frame is

then transformed back to the spatial domain where the sharp

edges are lost due to the high frequency components being

filtered out (Fig. A.2).

The image frame is transformed into a matrix that exhibits

conjugate symmetry. Conjugate symmetry results when a real

image is transformed into the frequency domain. The number

of computations for each spatial frequency and its complex

conjugate can be reduced using Euler's identity,

e + e- j = 2 cos(w) , (A.2)

71

Figure A.1 An 8x8 Square Image of Unity Amplitude
Depicted on a 32x32 Pixel Frame.

Figure A.2 Filtered Frame after being Transformed Back to

the Spatial Domain.

72

where w = kln 1+k2n2 for the two-dimensional case. The

contribution of each spatial frequency and its complex

congugate was computed using

F(k 1k2) + F'(k k2) =

2IF(k,,k)2Icos[7(n k +n2k2) + xF(k,,k 2)] , (A.3)

where N = 32.

As an example, the spatial frequency F(-l,-l) is the

complex conjugate of the spatial frequency F(l,1). In the

reconstruction of the filtered frame in the spatial frequency

domain, the contribution of a specific spatial frequency and

its complex conjugate were calculated using Eqn. A.3 and then

summed with the previous frame.

Figures A.3-A.8 show the successive summation of each

spatial frequency and its corresponding complex conjugate in

the reconstruction of the filtered frame in the spatial

frequency domain. Each figure depicting a specific spatial

frequency has been scaled and phase shifted based on the

Fourier coefficients that were computed using the DFT.

Figure A.3 depicts the summation of the dc component and

F(0,1) and its complex conjugate. Figure A.4 depicts the

contribution of spatial frequencies F(0,2) and F*(0,2) which

are then summed with the frame shown in Fig. A.3 to produce

Fig. A.5.

73

Figure A. 3 Summation of the dc component, F(0,1), and
F*(0,l1)

Figure A.4 Spatial Frequency F(0,2)

74

Figure A. 5 Summation of Previous Spectral Frequencies,

F(0,2), and F*(O,2).

75

This process is continued with the contributions from the

other spatial frequencies being computed and summed with the

frame shown in Fig. A.5. Figure A.6 shows the spatial

frequency F(2,1) which has two cycles in the nl-direction and

one cycle in the n2-direction. Figure A.7 shows the summation

of all the contributions up to this point. The final frame

shown in Fig. 8 is the same as the frame depicted in Fig. A.2.

76

Figure A.6 Spatial Frequency F(2,1)

Figure A.7 Summation of Previous Spectral Frequencies and
F(2,1) and F*(2,1).

77

Figure A.8 Final summation of all spectral frequencies.

78

B. PROGRAM LISTING

SPAPIC.M is a stand-alone MATLAB program that

reconstructs a filtered image in the frequency domain.

***** ** **** *********** ****** ******* ** *** ***** ******** * *

% VARIABLE DEFINITION

% pict : Frame with square image as it would appear in
spatial domain

% img : 8x8 square image with unity amplitude
% freq : Frequency vector listing the pertinent

spatial frequencies needed to
reconstruct the filtered image in the
spatial frequency domain

% fftpic : Frame after transformation to the spatial
frequency domain

% freqpict : Frame after lowpass filtering in spatial
% frequency domain
% pictifft : Lowpass filtered Frame after transformation
% back to spatial domain

% CREATE THE PICTURE

img = ones(8);
pictl = zeros(32);
pictl([14:21],[14:21]) = img;

nl n2] = size(pictl);

% CREATE FREQUENCY VECTOR

n = 0;
for i = 0:3,

if i == 0,
for j = 0:3,

n = n + 1;
freq(n,:) [(2*pi*i)/nl (2*pi*j)/n2];

end
else

for j = -3:3,
n = n + 1;
freq(n,:) = [(2*pi*i)/nl (2*pi*j)/n2);

end
end

end

79

% PLOT THE FRAME IN THE SPATIAL DOMAIN

mesh (picti)
title('Frame -- Spatial Domain')
meta spaplot

% TAKE FOURIER TRANSFORM OF FRAME

fftpictl = fftshift(fft2(pictl));

% PASS THE TRANSFORMED FRAME THROUGH A LOWPASS FILTER

trnpict = fftpictl([14:20],[14:20]);
trnpictl = trnpict(:);

% TAKE INVERSE FOURIER TRANSFORM OF FILTERED FRAME

freqpict = zeros(32);
freqpict([14:20], (14:20])= trnpict;
pictifft = ifft2(fftshift(freqpict));

% PLOT THE FILTERED FRAME IN THE SPATIAL DOMAIN

mesh (pictifft)
title('Lowpass Filtered frame in the spatial domain')
meta spaplot
pause(5)

% DISPLAY AND SAVE THE MAGNITUDE AND PHASE OF THE
TRANSFORMED PICTURE

diary spadiary.mat
disp('Lowpass Filtered Frame -- Magnitude and Phase')
z1 = (abs(trnpictl'); angle(trnpictl')
diary off

% CONSTRUCT THE FRAME IN THE FREQUENCY DOMAIN USING
% FREQUENCIES THAT WERE NOT TRUNCATED

z1 = zl(:,i:25);
zl = flipud(zl');
pict= zeros(32);

for n = 1:25,
u = freq(n,l);
v = freq(n,2);

mag = zl(n,l);
phase = zl(n,2);
x = 0:31;
y = 0:31;
[xx,yy] = meshdom(x,y);
z 2 * mag * cos(u*xx + v*yy + phase);

80

pict = pict + Z;
subplot(211), mesh(z)
title ('Constructing truncated image in frequency '.

'domain')
xlabel(['f (, numz~st u), , num2str Cv) ') '3

subplot(2 12), mesh(pict)
xlabel(['Adding f(',num2str(u),',',num2str(v),') and' ...

If*(', num2str(u),',',num2str(v),') to the I'...
'picture']);

meta spaplot
pause (3)
cig

end

cig, subplot(111)

%GET A PLOT OF THE FINAL IMAGE CONSTRUCTED IN THE FREQUENCY
%DOMAIN

mesh (pict)
title('Final image constructed in the frequency domain')
meta spaplot

81

APPENDIX B. PPHSE.M

A. PROGRAM DISCUSSION

PPHSE.M is a stand-alone program written for use with

MATLAB to demonstrate the spatial frequency phase shift that

results from moving an object across an image frame in the

spatial domain.

PPHSE.M sequentially moves an 8x8 unity square across a

32x32 image frame in the spatial domain for 50 iterations.

Two image frames are transformed to the spatial frequency

domain. The first image frame consists of a homogeneous

background with no added noise. The second image frame has

zero mean, Gaussian white noise.

The real and imaginary Fourier coefficients and the phase

in degrees are recorded and plotted for both the no-noise and

noise-corrupted image frames for the two spatial frequencies

F(1,0) and F(0,1). Only the phase is worth noting since the

magnitude of the transformed image frame remains constant.

In the spatial frequency domain, the effect of moving the

square object across the image frame is a phase shift in each

of the spatial frequency components.

Figure B.1 shows the phase shift in degrees for the spatial

frequency F(1,0). The effect of moving the square object

across the image frame 1 pixel per iteration is a 11.25 ° phase

shift per iteration. The dashed line represents the noise-

82

corrupted image frame. The phase shift is no longer perfectly

linear, but it still tracks the no-noise phase shift rather

closely.

Figure B.2 shows the phase shift in degrees for the

spatial frequency F(0,1). The effect of simultaneously moving

the square object 2 pixels per iteration vertically is a 22.50

phase shift per iteration. The phase shift for the noise

corrupted image frame is represented by the dashed line and

the nonlinear phase shift again generally follows the no-noise

phase shift.

It should be noted that the phase shift due to the object

motion is a function of the spatial frequency. In this

example, F(1,0) and F(0,1) were chosen because they represent

the spatial frequencies that purely describe the horizontal

and vertical motion of the moving object.

Figures B.3-B.6 sequentially show the magnitude of the

real and imaginary Fourier coefficients for the spatial

frequencies F(1,0) and F(0,1). The dashed line again

represents the coefficients of the noise-corrupted image

frame.

The real and imaginary Fourier coefficients for each of

the spatial frequencies were two of the three the states that

were estimated by the extended Kalman filter described in thiE

thesis.

83

200

150-= -

100 4 .
I '

50"

0 II "4 '

I A I II

.50-
- I '/ -'- 'A4/

-100 ' .'44- °- 'NJ,. "
-150-\ '

-2001
0 5 10 15 20 25 30 35 40 45 50

Figure B.1 Phase Shift in Degrees for Spatial Frequency
F(1,0).

200

150- I 4 I --"

100 - .'

50-
L o-

-100 - I

.SO 1.4 I ''I.

4 4j I

-1504

0 5 10 15 20 25 30 35 40 45 50

Figure B.2 Phase Shift in Degrees for Spatial Frequency
F(0,1).

84

• I

80

60-

20 A

j.20- l% /A

~-40-

-60-1

-80- ~

-100-

-120 0 5 10 15 20 25 30 35 40 45 50

Iteration

Figure B.3 Real Fourier Coefficients for Spatial
Frequency F(1,0).

60-

40-

-20

4 0

-100 I

* -120 0 5 10 15 20 25 30 35 40 45 50

Iteration

Figure B.A Imaginary Fourier Coefficients for Spatial
Frequency F(1,0).

85

80

60 - i

40 \I -I ,

20 \ '''

-20- /, L,
I I "

-40 1

60-
I it

.. 0 1
I I

*-820 j II

" I

0 5 0 15 20 25 30 35 40 45 50

Iteration

Figure B.i Real Fourier Coefficients for Spatial

Frequency F (0,1).

100

80-I

60'

40-

.10

-80- V,
"100 S 10 15 20 25 30 35 40 45 50

Iteration

Figure B.6 Imaginary Fourier Coefficients for Spatial

Frequency F(0,1).

86

B. PROGRAM LISTING

% PPHSE.M is a stand-alone program that demonstrates
% the spatial frequency phase shift that results when
% a moving object traverses an image frame in the
% spatial domain

clear % clear out all variables in memory
clear functions

shpe = ['Square']; % Define the shape of the moving image
vrow = 2.0; % Vertical Velocity -- # of pixels/its
vclm = 1.0; % Horizontal Velocity -- # of pixels/its
imax = 3; % Size of the spatial frequency truncation
jmax = 3;
its = 50; % Number of iterations
sigl = 1.0; % Standard deviation of the noise

shape = ones(8); % Define the shape -- square of %
unity amplitude

pict = zeros(32); % Create digital array to place %
image in

rand('normal'); % Establish normal distribution
rand('seed',2380849) % Define a standard random seed
[nl n2] = size(shape);% Define the size of the image

% CREATE STORAGE VECTORS FOR CALULATED DATA

phaseO=zeros(2,its); % Phase shift in degrees -- no noise
phasel=zeros(2,its); % Phase shift in degrees -- 1.0 Std dev

rsltO = zeros(2,its); % Fourier coef. -- no noise
rsltl = zeros(2,its); % Fourier coef. -- Std dev. = 1.0

% MOVE THE IMAGE ACROSS THE DIGITAL ARRAY FOR THE NUMBER OF
% ITERATIONS SPECIFIED.

for i = 0:(its-i),

% DEFINE THE PARAMETERS FOR IMAGE LOCATION

il = rem(round(vrow*i+l),32)+l;
i2 = rem(round(vrow*i+8),32)+l;
i3 = rem(round(vclm*i+l),32)+l;
i4 = rem(round(vclm*i+8),32)+l;

87

% PUT iMAGE INTO THE 32X32 ARRAY 'pict"

pict = zeros(32);

if i2 < ii,
if i4 < D3,

pict(il:32,i3:32) = shape(l:nl-i2,l:n2-i4);
pict(l:i2,l:i4) = shape(nl+l-i2:nl,ri2+l-i4:n2);
pict(il:32,l:i4) = shape(l:nl-i2,n2+l-i4:n2);
pict(l:i2,i3:32) = shape(nl+l-i2:nl,l:n2-i4);

else
pict(il:32,i3:i4) = shape(l:ril-i2,l:n2);
pict(l:i2,i3:i4) = shape(nl+l-i2:8,l:n2);

end
else

if 14 < D3,
pict(il:i2,i3:32) = shape(1:nl,l:n2-i4);
pict(il:i2,l:i4) = shape(l:nl,n2+l-i4:n2);

else
pict(il:i2,i3:i4) = shape(1:nl,1:n2):

end
end

% CREATE THE FRAME CORRUPTED BY NOISE

picti = pict + (sigl*rand(32));

% TRANSFORM THE FRAMES INTO THE SPATIAL FREQUENCY DOMAIN

fftpicto = fftshift(fft2(pict));
fftpictl = fftshift(fft2(pictl));

%OBTAIN THE PHASE IN DEGREES FROM SPATIAL FREQUENCIES
%F(0,1) & F%11,0)

phaseO(l,i+l) = 57.2958*angle(fftpictO(16,17));
phasel(1,i+1) = 57.2958*angle(fftpictl(16,17));
phaseO(2,i+l) = 57.2958*angle(fftpictO(17,18));
phasel(2,i+l) = 57.2958*angle(fftpictl(17,18));

%OBTAIN THE FOURIER COEFFICIENTS FOR SPATIAL FREQUENCIES
%F(0,1) & F(1,0)

rsltO(l,i+l) = fftpictO(16,17);
rsltl(l,i+l) = fftpictl(16,17);
rsltO(2,i+l) = fftpictO(17,18);
rsltl(2,i+1) = fftpictl(17,18);

end

88

%PLOT THE PHASE SHIFT FOR SPATIAL FREQ F(0,1) IN DEGREES

n = 1:its;
plot(n,phaseO(1,:),'w',n,phasel(1,:),'--w')
title('Phase shift for image velocity of (1,2)')
xlabel('Phase shift for F(0,1) in degrees')
ylabel ('Degrees')
meta pphse
pause

% PLOT THE PHASE SHIFT FOR SPATIAL FREQUENCY F(1,0) IN
% DEGREES

plot(n~phaseo(2,:),'w',n,phasel(2,:),'--w')
title('Phase shift for image velocity of (1.2)')
xlabel('Phase shift for F(1,0) in degrees')
ylabel ('Degrees')
meta pphse
pause

% PLOT THE REAL FOURIER COEFF FOR SPATIAL FREQ F(0,1)

plot(n,real(rsltO(1,:)),'w',n,real(rsltl(1,:)),'--w')
title('Real Fourier coefficients for F(0,1)')
xlabel ('Iteration'), ylabel ('Magnitude')
meta pphse
pause

% PLOT THE IMAGINARY FOURIER COEFF FOR SPATIAL FREQ F(0,1)

plot(n,imag(rsltO(1,:)),'w',n,imag(rsltl(1,:)),'--w')
title('Imaginary Fourier coefficients for F(0,1)')
xlabel ('Iteration'), ylabel ('Magnitude')
meta pphse
pause

% PLOT THE REAL FOURIER COEFF FOR SPATIAL FREQ F(1,0)

plot(n,real(rsltO(2,:)) , 'w,n,real(rsltl(2,:)), '--w')
title('Real Fourier coefficients for F(1,0)1)
xlabel('Iteration'), ylabel('Magnitude')
meta pphse
parse

% PLOT THE IMAGINARY FOURIER COEFF FOR SPATIAL FREQ F(1,0)

plot(n,imag(rsltO(2,:)),'w',n,imag(rsltl(2,:)),'--w')
title('Imaginary Fourier coefficients for F(1,0)')
xlabel('Iteration'), ylabel('Magnitude')
meta pphse
pause

89

APPENDIX C. PMEKF.M

PROGRAM LISTING

PMEKF.M is a stand-alone MATLAB program that implements the

modified extended Kalman filter (MEKF) for moving objects.

* VARIABLE DEFINITIONS

% shpe : string defining shape of moving object
% vrow : vertical velocity in # of pixels per iteration
% vclm : horiz. velocity in # of pixels per iteraiton
% imax,jmax : rectangular dimensions of spatial truncation
% window; located at center of transformed frame
% its : number of iterations
% sig : standard deviation of the added noise
% chkrbd : flag indicating user's intentions of whether
% or not to include checkerboard background
% a : amplitude of individual checkers
% runnum : for successive runs; number indicating
% specific run
% pictchkr : image frame containing checkerboard bkgrd;
% moving image included later
% freq : vector listing two-dimensional frequencies to
* be analyzed
% lfreq : length of the freq vector
% normpic : Frobenius norm of error matrix; subtract
% filtered image frame from original, no-noise
% image frame
% normpict : Frobenius norm of error matrix; subtract
% filtered image frame from truncated, no-noise
% image frame
% xh : state estimate vector
% vh : velocity estimate vector
% y : vector containing Fourier coefficients
% pk : storage array for "pkk"W -ovariance matrices
% pkk : estimation error covariance matrix; spatial
% frequency specific
% q : plant noise covariance matrix
% r : measurement noise covariance matrix
* pict : no-noise image frame containing moving object
* pictn : no-noise image frame containing moving object
% and spatial frequency truncated
% randpict : image frame containing moving object and added
% zero-mean, white Gaussian noise
% ***

90

clear
clear functions

shpe = ['Rectangle');
vrow = 2.0;
vclm = 1.0;
imax = 3;
jmax = 3;
its - 25;
sig = 1.00;
chkrbd = 'n'; % ('y' -- yes; 'n' -- no)
a = 0.25;
runnum = 1;

% DEFINE THE SHAPE

xl = 1.00; x2 = 1.00; x3 = 1.00; x4 = 1.00;

shape = [[xl xl xl xl xl xl xl xl]
xl x2 x2 x2 x2 x2 x2 xl
xl x2 x3 x3 x3 x3 x2 xl
xl x2 x3 x4 x4 x3 x2 xl
xl x2 x3 x4 x4 x3 x2 xl
xl x2 x3 x3 x3 x3 x2 xl
xl x2 x2 x2 x2 x2 x2 xl
xl xl xl xl xl xl xl xl)J;

% CREATE A CHECKERBOARD BACKGROUND IF REQUIRED

if (chkrbd ==y'),
pictchkr = zeros(32);
chkr = a * ones(8);
for i = 1:4,

if i == 1 I i ==3,
pictchkr([i*8-7:i*8],[l:8]) = chkr;
pictchkr((i*8-7:i*8],(17:24]) = chkr;

else
pictchkr((i*8-7:i*8],[9:16]) = chkr;
pictchkr([i*8-7:i*8],[25:32]) = chkr;

end
end

end

91

% CREATE FREQUENCY VECTOR

n = 0;
for i - 0:imax,

if i =- 0,
for j = O:jmax,

n = n+1;
freq(n,:) [i j];

end
else

for j = -jmax:jmax,
n = n+l;
freq(n,:) (i j];

end
end

end

% CREATE AND DEFINE NECESSARY VARIABLES

co = pi/16;
jj = sqrt(-l);
lfreq = length(freq);
rand('normal'); % Establish normal distribution
rand('seed',2380849) % Define a standard random seed
(ni n2] = size(shape);% Dimensions of the image frame
y = zeros(ifreq,its);
xh = zeros(3,1freq);
vh - zeros(2,its);
q= (0 0 0

0 0 0
0 0 .4 J;

r = sigA2*512*eye(2);

normpic = zeros(l,its);
normpict= zeros(l,its);

% GENERATE THE INITIAL ESTIMATION ERROR COVARIANCE MATRIX.
% EACH INDIVIDUAL FREQ COVARIANCE MATRIX IS STACKED IN "pk"

pk = zeros(9,lfreq);
for k = 1:lfreq,

pkk= (1024 0 0
0 1024 0
0 0 4*freq(k,:)*freq(k,:)'];

pk(:,k)= pkk(:);
end

92

%MODIFIED EXTENDED KALMAN FILTER

%OBJECT IS MOVED ACROSS THE IMAGE FRAME FOR THE NUMBER OF
%ITERATIONS SPECIFIED

for i - O:(its-1),

%REINITIALIZE THE TYPE OF IMAGE FRAME USED IN THE
%SIMULATION

if (chkrbd == ')
pict = pictchkr;

else
pict -zeros (32);

end

%DEFINE THE PARAMETERS FOR IMAGE LOCATION

il = rem(round(vrow*i+l),32)+l;
12 = rem(round(vrow*i+S),32)+l;
13 = rem(round(vclm*i+l),32)+1;
i4 = rem(round(vclm*i+8),32)+1;

%PUT IMAGE INTO THE 32X32 ARRAY "pict"

if 12 < il,
if 14 < 13,

pict(il:32,i3:32) = shape(l:nl-i2,l:n2-i4);
pict(l:i2,l:i4) = shape(nl+l-i2:nl,n2+1-i4:n2);
pict(il:32,l:i4) = shape(l:nl-i2,n2+1-i4:n2);
pict(l:i2,i3:32) = shape(nl+l-i2:nl,l:n2-i4);

else
pict(il:32,i3:i4) = shape(l:nl-i2,1:n2);
pict(l:i2,i3:i4) = shape(nl+l-i2:8,l:n2);

end
else

if i4 < i3,
pict(il:i2,i3:32) = shape(l:nl,l:n2-i4);
pict(il:i2,l:i4) = shape(l:nl,n2+l-i4:i2);

else
pict(il:i2,i3:i4) = shape(l:ril,l:n2);

end
end

randpict = pict + (sig*rarxd(32));
fpic - fft2(randpict);

*fpic = fftshift(fpic);
fband - fpic((17-imax): (17+imax), (17-jmax): (17+jmax));
fvec - fband(:);
y(:,i+l) = fvec(((lerigth(fvec)+l)/2):length(fvec));

93

%TRUNCATE THE SPATIAL FREQS OF UNCORRUPTED PICTURE

pictn - fft2(pict);
picti = fftshift(pictn);
fbandl =pictn((17-imax): (17+imax), (17-jmax) :(17+jmax));
pictn = zeros(32);
pictn((17-jinax) :(17+imax) ,(17-jmax) :(17+jmax)) = fbandl;
pictn = fftshift(pictn);
pictn = ifft2(pictn);

%ITERATE THRU THE "parallel" BANK OF EXT. KALMAN FILTERS

for k =1:lfreq,
dth =co*xh (3, k);
cdth -cos(dth);
sdth =sin(dth);

dh = [cdth sdth
-sdth cdth J

dph =((-xh(1,k)*sdth+xh(2,k)*cdth)*co

(-xh(l,k)*cdth-xh(2,k)*sdth)*co)

ah = (dh dph
0 0 1)

pkk(:) =pk(:,k);
pkplk =ah*pkk*ah' +q;
g = pkplk(:,1:2)/(pkplk(l:2,l:2)+r);
xh(l:2,k) = dh*xh(1:2,k);
yh = xh(1:2,k);
ym = C real(y(k,i'-1))

imag(y(k,i+l)) J
xh(:,k) = xh(:,k)+g*(ym-yh);
pkk = pkplk - g* (1 0 0; 0 1 O)*pkplk;
pk(:,k) = pkk(:);

end

% THESE THREE LINES GENERATE THE WEIGHTED LEAST SQUARES
%ESTIMATE OF THE VELOCITY VECTOR. COMMENTED OUT WHEN
%NOT USED.

sigin = diag(ones(l,(lfreq-l)) ./pk(9,2:lfreq));
fre = freq(2:lfreq,:);
vh(:,i+l) - (fre'*sigin*fre)\fre'*sigin*xh(3,2:lfreq)';

%THIS LINE GENERATES THE LEAST SQUARES ESTIMATE OF THE
%VELOCITY VECTOR (unweighted). COMMENTED OUT WHEN NOT
%USED.

%vh(:,i+l) = freq(2:lfreq,:)\xh(3,2:lfreq)';

94

% THIS LINE CHANGES THE ESTIMATES OF FREQUENCY FOR THE
% INDIVIDUAL FILTERS LEAST SQUARES ESTIMATE. COMMENTED OUT
% WHEN NOT USED.

xh(3,:) = [freq*vh(:,i+l) I';

% RECONSTRUCT THE IMAGE BACK INTO THE TIME DOMAIN.

fpic = zeros(32);
xhc = zeros(l,(2*lfreq-1));
xhc(lfreq:(lfreq*2-1)) = xh(l,:)+jj*xh(2,:) ;
xhc(lfreq:-l:1) = xh(l,:)-jj*xh(2,:);
xhc(ifreq) = xh(l,1);
fband(:) = xhc;
fpic((17-imax): (17+imax), (17-jmax): (17+jmax)) = fband;
fpic = fftshift(fpic);
pic = ifft2(fpic);

% CALCULATE THE NORM OF A MATRIX

% FROBENIUS NORM : UNCORRUPTED IMAGE

normpic(i+l) = norm(pict - pic,'fro')/ 32;

% FROBENIUS NORM : UNCORRUPTED, SPATIALLY-TRUNCATED IMAGE

normpict(i+1)= norm(pictn - pic,'fro')/ 32;

end

% DEFINE A TEXT LABEL FOR FINAL PLOTS

name =['Std deviation = ',num2str(sig), ...
'Iterations = ',num2str(its), --.

'vel(',num2str(vrow),',',num2str(vclm),') ';

% DISPLAY THE FINAL IMAGE

pname = ('meta pmekf_',num2str(runnum)];

clc
mesh (pic)
title([shpe ' -- Filtered Image -- Time domain'])
xlabel (name)
eval (pname)
pause

95

mesh (pict)
title((shpe ' -Uncorrupted image')
xlabel (name)
eval (pname)
pause

mesh (pictn)
title (shpe ' -Uncorrupted image (spatially truncated)-])
xlabel (name)
eval (pname)
pause

% PLOT FROBENIUS NORMS AND VELOCITY ESTIMATES

n - l:its;
plot(n,riormpic,'-',n,normpict,'--')
title([shpe I -- Frobenius Norm'])
eval (pname)
pause

plot(n,vh(l,:),'-',n,vh(2,:),'--')
title([shpe ' -- Velocity Estimates'])
xlabel (name)
eval (pname)
pause

% SAVE THE CALCULATED DATA

m = C n' vh' normpic' nonnpict');
ekfdata=('save pmekf_',num2str(runnum) ,'.mat m /ascii');
eval(ekfdata);

96

LIST OF REFERENCES

1. Burl, J. B., A Reduced Order Extended Kalman Filter for
Moving Images, unpublished manuscript, Naval
Postgraduate School, Monterey, California,
1989.

2. Dudgeon, Dan E. and Mersereau, Russell M.,
Multidimensional Digital Signal Processing, pp. 61-67,
Prentice-Hall, 1984.

3. Brigham, E. Oran, The Fast Fourier Transform, p. 45,
Prentice-Hall, 1974.

4. Candy, James, Signal Processing: The Model-Based
Approach, pp. 154-159, McGraw-Hill Book
Company, 1986.

5. Anderson, Brian D.O. and Moore, John B.,
Optimal Filtering, pp. 193-195, Prentice-Hall,
1979.

6. Gelb, A. et al, Applied Optimal Estimation, pp. 278-
280, The M.I.T. Press, 1986.

7. Golub, Gene H. and VanLoan, Charles F., Matrix
Computations, The John Hopkins University Press,
1983.

97

BIBLIOGRAPHY

1. Friedland, Bernard, Control System Design: An
Introduction to State-Space Methods, McGraw Hill Book
Company, 1986.

2. Gonzalez, Rafael C and Wintz, Paul, Digital
Image Processing, 2nd ed., Addison-Wesley
Publishing Company, 1987.

3. Kirk, D.E., Optimal Estimation: An Introduction to the
Theory and Applications, unpublished manuscript,
Naval Postgraduate School, Monterey,
California, 1975.

4. Strang, Gilbert, Linear Algebra and Its Applications,
3rd ed., Harcourt Brace Jovanovich
Publishers, 1988.

98

INITIAL DISTRIBUTION LIST
No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code 62 1
Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5004

4. Profesor R. Cristi, Code 62Cx I
Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5004

5. Professor J.B. Burl, Code 62B1 1
Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5004

6. Commandant of the Marine Corps 1
Code TE 06
Headquarters, U.S. Marine Corps
Washington, DC 20380-0001

7. Captain P.A. Lindeman, U.S.M.C. 2
220 68 8708/7654/9624
MCRADC
Marine Corps Combat Development Center
Quantico, Virginia 22134-5080

8. Lieutenant W.A. Conklin, USN 1
Code 39
Naval Postgraduate School
Monterey, California 93943-5000

99

9. Captain S.L. Spehn, U.S.M.C.
Code 32
Naval Postgraduate School
Monterey, California 93943-5000

10. Major D. Aviv, Israeli Air Force
Code 32
Naval Postgraduate School
Monterey, California 93943-5000

100

